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Abstract

This paper establishes necessary and sufficient conditions for an adaptive system with a
harmonic regressor (i.e., a regressor comprised exclusively of sinusoidal signals) to admit an
exact linear time-invariant (LTI) representation. These conditions are important because
a large number of adaptive systems used in practice have sinusoidal regressors, and the
stability, convergence and robustness properties of systems having LTI representations can
be completely analyzed by well-known methods. The theory is extended to applications
where the LTI conditions do not hold, in which case the harmonic adaptive system can be
written as the parallel connection of a purely linear time-invarismt (LTI) subsystem and
a linear time-varying (LTV) subsystem, An explicit upper bound is established on the
induced 2-norm of the LTV block which allows systematic treatment using robust control
methods applicable to LTI systems with norm-bounded additive perturbations.

1 INTRODUCTION

A large number of adaptive systems used in practice (e.g., for adaptive signal processing,
noise canceling, acoustics, vibration suppression, etc. ), have regressors which cent ain sinu-
soidal excitations. In certain interesting csses, such systems have been found to admit exact

- finite-dimensional linear time-invarismt (LTI) representations (cf., Glover [14], Morgan and
Sanford [18], Morgan [19], Elliott et. al. [II], and Widrow and Stemms [25], Bodson et. d.
[8], Messner and Bodson [16]). Such csses are important because the stability, convergence
and robustness properties of the adaptive system can be analyzed simply and completely
within an LTI framework.

Interestingly, despite various successes in specific application aress, no general unified
theory of LTI adaptive feedforward  systems hss emerged. In particular, no definitive con-
ditions for the LTI phenomena have been previously established.

In this paper, a general unified theory of LTI representations is developed for adap-
tive systems having harmonic regressors. The main result is a precise condition (i.e., both
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necessary and sufficient ), for such hsrmonic  adaptive systems to have an exact LTI rep-
resentation, and a closed-form analytic expression for this LTI representation when the ‘
condition is satisfied. The theory completely unifies existing results by reproducing as
special cases all known instances of LTI adaptive systems found in the literature. More
importantly, the theory is formulated in a very general framework and indicates a much
larger class of LTI adaptive systems than previously known,

The theory is then extended to deal with harmonic adaptive systems for which the LTI
conditions are not satisfied. In such cases, it is shown that the adaptive system can be
written as the parallel connection of a purely LTI block and an LTV block. An explicit
upper bound is determined on the 2-norm of the LTV block. It is demonstrated that
the upper bound can be maximally tightened by solving a related linear matrix inequality
(LMI). The resulting adaptive system hsa the form of an LTI plant with a norm-bounded
additive perturbation which can be analyzed using standard robust control formulations.

The LTI approach for a.rdyzing adaptive systems represents a strong departure from
traditional approaches based primarily on nonlinear and/or time-varying representations
and stability theory [21]. In contrast, the LTI approach provides a more complete char-
acterization of the overall system behavior, which can potentially lead to the design of
adaptive systems with better performance and robustness properties.

All results in this paper are based on the analysis in a recent report [2] and related
conference papers [3][4][5].

2 B A C K G R O U N D

2.1 Adapt ive Systems with Harmonic Regressors

The configuration to be studied is shown in Figure 2.1, An estimate ij of some signal y is
to be constructed as a linear combination of the elements of a regressor vector z(t)  c RN,
i.e.,
Estimated Signal

; = w(t)*z(t)

where w(t) 6 RN is a parameter vector which is tuned
algorithm,
Adaptation Algorithm

w = pI’(p)[i(t)e(t)]

(2.1)

in real-time using the adaptation

(2.2)

Here, the notation r(p) [”] is used to denote the multivariable LTI transfer function I’(s) .1
where I’(s) is any LTI transfer function in the Laplace s operator (the differential operator
p will replace the Laplace operator s in all time-domain filtering expressions); the term
e(t) E R1 is an error signal; p > 0 is an adaptation gain; and the signal i is obtained by
filtering the regressor z through any stable filter F(p), i.e.,
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Regressor Filtering

The notation F(p)[.]
filter F(s), acting on

i = F(p)[z] (2.3)

denotes the multivariable LTI transfer function F(s) “ I with S1S0
the indicated vector time domain signal.

For the purposes of this paper, it will be assumed that the regressor z can be written aa
a linear combination of m distinct sinusoidal components {~i}~l, O < WI < U2 < . . . < ~mj
where the frequencies have been ordered by size from smallest to largest. Equivalently, it
is assumed that there exists a matrix X E RNx2m such that,
Harmonic Regre8soT

z = xc ( t ) (2,4)

c(i) = [sin(uIt), Cos(ult), . . . . sin(wrnt), cos(~mt)]T  E R2m (2.5)

DEFINITION 2.1 The matTiz  X*X b dejined as the confluence matrix associated
m“th the haTmonic  TegTessor  x in (%4). ■

The name “mnfluence matrix” has been chosen to reflect the fact that for overpararnetrized
regressors z ~ RN, N > 2m, N signal channels are effectively combined into a smaller
number of 2m channels using properties of this matrix. The confluence matrix has been
shown in [6] to play a critical role in determining exponential convergence properties of
overparametrized  adaptive systems, and will be shown here to play an equally critical role
in determining their LTI properties.

Equations (2.1)-(2.5) taken together will be referred to as a haTmonic  adaptive system.
Collectively, these equations define an
e to the estimated output j. Because
the special character 7-t, i.e.,

The special structure of H is depicted

e

. . . . . . . . . . . . . . . . .

important open-loop mapping from the error signal
of its importance, this mapping will be denoted by

$ = 7i[e] (2.6)

in Figure 2.1.

?-i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1: LTV operator j = ti[e] for adaptive system with harmonic regressor z, adap-
tation law I’(s), and regressor filter F(s)

3



.

Most generally H is a linear time-varying (LTV) operator. However, the main results
of this paper show that under certain simple conditions on the matrix X, the mapping ?-i is
actually linear time-invariant (LTI). This result has profound implications for many classes
of adaptive systems, since they can be designed and analyzed completely using LTI theory.

REMARK 2.1 The definition of I’(s) is left intentionally general to include analysis of the
gradient algorithm (i.e., with the choice I’(s) = 1/s), the gradient algorithm with leakage
(i.e., I’(s) = 1/(s+a); u z O), proportional-plus-integral adaptation (i.e., I’(s) = kP+ki/~)j
or arbitrary linear adaptation algorithms of the designer’s choosing. Adaptation laws which
are nonlinear or normalized (e.g., divided by the norm of the regressor), are not considered
here since they do not have an equivalent LTI representation I’(s). ■

REMARK 2.2 The use of the regressor filter F(s) is (2.3) allows the unified treatment of
many importmt adaptation algorithms including the well-known Filtered-X (FX) algorithm
horn the signal processing literature [25], and the Augmented Error (AE) algorithm of
Monopoli [17]. Since
stable, all subsequent
state condition.

2.2 Discussion

z is comprised purely of sinusoidal components and F in (2.3) is
analysis will assume that the filter output Z has reached a steady-
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Most generally H in (2.6) is a linear time-varying (LTV) operator, However, under certain
conditions on the matrix A?, the mapping M is actually linear time-invariant.

The intuition behind this seemingly strange phenomena is explained by the modula-
tion/demodulation properties of multiplicative sinusoidzd  terms. As a simple example,
consider the LTI bandpass filter (BPF) implementation shown in Figure 2.2.

Here, a lowpass filter L(s) is sandwiched between matched sine/cosine multiplications.
By inspection, the output can be written in terms of convolution integrals as,

Y =  ‘inw@(7)sinW,(t ‘~)u(t ‘~)d~+msu,t~~(~)~sw,(t- ~)”(t - ‘)d~ (2 0 7)

where l(t) is the impulse response of the low-pass filter L(s). At first glance this looks like
an LTV system, However, substituting the trigonometric identity,

sin U,t sin~,(t  – ~, +  cos~btcos~b(t  –  ~, =  ~swb~ (2.8)

into (2.7) and rearranging gives,

JY =  ~t ~(~) COS ~b(~)u(t – ~)d~ (2.9)

This integral can be recognized as a convolution of the input u with the time-invariant
impulse response f?(t) cos U,(t). Hence, the overall filter is LTI even though it has time-
varying elements. The essential relation is identity (2.8) which indicates that the function
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G(s)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

: Sincobf .
.. ..

.

.. us)

u: Y

... ➤ L@

.

. .

. .

.
:  Cosalbt

..
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G(s) = ;(L(s-jo,)+L(s+ jo,))

Figure 2.2: Exact LTI Bandpass filter y = G(p)u using Lowpass filter L(s) and modulation
properties of sandwiched sinusoidal multiplications

of both t and ~ on the left hand side, can be written purely as the function of T seen on
the right hand side.

It is also worth noting that the impulse response of the convolution integral (2.9) is
formed by modulating the lowpass filter response f?(t) by cos(u~-t), so that the resulting LTI
filter has the bandpass characteristic,

G(s) = ~{~(t) COS wbt} = ;(W - j%)+ qs + jQ)) (2.10)

Here we have used the well-known modulation property L{.4(t)e~”b*} = L(s – ~Ub) of the
Laplace transform [7].

As a specific example, let L(s) = 1/(s + a) in Figure 2.2. Then the operator from u to y
shown in Figure 2.2 is exactly representable as an LTI filter, and hss a (bandpass) transfer
function which can be computed from (2.10) as,

.
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3 LTI REPRESENTATIONS

3.1 Single-Tone Regressor Case

Lemma 3.1 first characterizes the LTI operator for the case of a single tone regressor. The
arrangement is depicted in Figure 3.1 and corresponds to the special case of X = di “ IZXZ
in (2.4).

~ kg(.)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
: c,(t)
+ d, “1=2 x

.. .. 4 .... F(s) .. ....
e: w ~

➤ r(s) -..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ .

Figure 3.1: Equivalent LTI representation of a harmonic adaptive system with a single tone

LEMMA 3.1 (Single-Tone Regressor) Let the regressor z(t)  in the  harmonic adaptive
system (2.1)-(2? 5) be given by the single-tone expression,

Z(t) = diCi(t) (3.1)

where  di is any ~calar,  and

Ci(i)  = [SinU;t, cOS Uil?]T E R’ (3.2)

Then the mapping W from e to ~ is exactly representable as the linear time-invariant
operator,

W : ~ =  7?(p)e (3.3)

where,
E(s) =/L di

2 . Hi(s) (3.4)

Hi(s) =
%W-@’)+r@+’”’O  +*(r(s-’u’)-r(s+  ’U’)) ’3 5 )

FR(i) ~ Re(F(ju~)); Fz(z) ~ Im(J’(j~i)) (3.6)



Proof:

The filtered regressor (2.3) is composed of a single sinusoid at ~i put through a linear
filter F’(s). Hence, using (3.6) it can be written (in steady-state) as,

i(t) = U!iF@)Ci(~)
 =  diri G(t) (3.7)

where,

(3.8)

Using (3.7), the mapping from e to ~ can be written as,

~ = @i2~(t)T “ ‘(P) [~idt)e] (3.9)

Let ~(t) be the impulse response of the LTI operator corresponding to I_’(p). Then using
(3.2) and (3.8), equation (3.9) can be expressed in terms of convolution integrals,

+ ~di2 cos ~it [’Y(T) ~R(i)mswi(t  ‘T)- FJ(i)sinwi(t  ‘r)]e(t-T)dT (310)

= @i2J))[ () 1
7 ~ FR  z cos  ~ir + F1(i) sin ~ir e(t – ~)d~ (3.11)

Here, (3.11) follows from (3.10) by using standard trigonometric identities (see Remark
3.1 below). Note that (3. 11) is in the form of a convolution of the input e(t) with the
time- invariant impulse response,

7(t)  = 7(t) [FR(~)  cos ~it + FI(z) sin wit1 (3.12)

Taking the Laplace transform 4{.} of (3.12) and using the modulation property [7],

L{-f(t)eJui:}  = r(~ – jLOi) (3.13)

gives the desired expression (3.5). ■

REMARK 3.1 In the proof of Lemma 3.1, (3.11) follows from (3.10) by using trigono-
metric identity,

[
Sin U~t ~R(i) Sin U~(t – 7) + F“(i) COS Wi(t – T) 1

[
+  cosw~t  FR(i)  Coswi(t – T) – FI(i)sinwi(t  – T) 1

(3.14)= FR(z) cos~ir + F1(i) sinw~~
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Identity (3.14) is a slight generalization of (2.8), and shows that the function of both t and
~ on the left-hand side can be represented purely as the function of ~ on the right side.
This ensures that the convolution (3.1 1) haa a shift-invariant kernel, which indicates that
the operator from e to j is LTI. ■

3.2 Multitone Regressor Case

The main result of this paper is given next which gives necessary and sufficient conditions
for the operator ?-i to be LTI in the general multitone case.

THEOREM 3.1 (LTI Representation Theorem) Let the regressm z(t) in the /uzr-
monic adaptive system (I?. 1)-(%3) be given by the general multitone harmonic expression

(.W)(Z.5) where the frequencies 0< U1 <... < w~ are distinct, nonzero, and lF(ju;)/  >0
for all i.

Then,

(i) The mapping ‘H from e to ~ is exactly representable as the linear time-invariant
operator,

w: j = X(p)e (3.15)

if and only if the matrix A’ in (A4) satisfies the following,

X- Orthogonality  (XO) Condition:
XTX = D2

I
d12 .12x2 O . . . 0

0 “.. ”.. .D2 &

‘i

E R2mx2m.. “. “. o
0 . . . 0 d: “ 12X2

(3.16)

(3.17)

where, d i

2 z O,i = 1 , . . . . m are scalars  and 12X2 E R2X2 is the matriz identity.

(ii) ~(s)  in ($.15) ia given in closed-form as,

Hi(s) =
Y)(r(’-jo’)+r(s+  ’u’)) +%W-j”J-

F~(i) ~ Re(F(j~i)); F](i)  ~ Im(F(j~i))

Proofi See Appendix A.

(3.18)

r(s + jLdi)
)

(3.19)

(3.20)

■



Intuitively, the results of Theorem 3.1 can be understood using the sequence of block
diagrmn rearrangements shown in Figure 3.2, (which incidentally can be taken as an alterna-
tive proof of sufficiency, but not necessity). Specifically, Figure 3.2 Part a. shows the initial
adaptive system with harmonic regressor; Part b. shows the matrix A? pushed through sev-
eral scalar matrix blocks of the diagram; Part c. substitutes the identity XT% = D* where
D* haa the special pairwise diagonal form associated with the XO condition (3.16)(3.17);
Part d. pushes the matrix D* back through several scalar matrix blocks; and Part e. fol-
lows by recognizing that Part d. is simply a parallel bank of filters of the form shown in
Figure 3.1 each with a perfect sine/cosine basis, i.e., it is representable as a summation of
LTI systems of the form treated in Lemma 3.1.

REMARK 3.2 The LTI representation from e to j in Theorem 3.1 is invariant under
any orthogonal transformation of the regressor, i.e., any z = Qz where QQ~ = QT Q = I.
To see this, assume that XTX = D2, and denote X’. = QX. Then using regressor z in the
transformed system gives,

X:xz = XTQTQX = XTX = D2 (3.21)

which satisfies the XO condition with the same confluence matrix D* as the original system.
This invariance is important in light of recent algorithms which perform adaptive fil-

tering in the transform domain, making use of orthogonal regressor transformations of the
form z = Qz (cf., the discrete Fourier transform [20] or wavelet transform [12] adaptive
filtering approaches). ■

REMARK 3.3 A harmonic adaptive system whick does not satisfy the XO condition
for a specific X can be made LTI (assuming that XTX is invertible) by the regressor
transformation z = Rx where R = D(XTX)-l XT, and where D is any matrix chosen such
that D2 has the pairwise diagonal form (3.17). Then testing the XO condition for the
transformed regressor z gives,

X:xz = xTRT~ . D2 (3.22)

which is satisfied by construction with confluence matrix D*. ■

3.3 Tonal Canonical Form

The proof of Theorem 3.1 (in particular, Part d. of Figure 3.2), indicates a new canonical
form.

DEFINITION 3.1 Tonal Canonical Form is dejined as the unique minimal realization
of an LTI harmonic adaptive system (f. 1)-(1.5) specified by the regressor choice q = De(t)
where D E R2mx2m  ti the non-negative diagonal square-root of its confluence matrix XTX =
D2 . ■

Simply stated, any harmonic adaptive ~y~iem which admits an LTI representation is
equivalent to an adaptive ~y.stem  realized in Tonal Canonical Form. Tonal canonical form
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a)

I

d)

e)

Figure 3.2: The XO
rearrangements

?-l

e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

—. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

~= H(s)

-WEEP
condition of Theorem 3.1 motivated by sequence diagram
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is a canonical form in the sense that it has a minimal length regressor (hence fewest possible
number of parameters), it ahoays exists (by Theorem 3,1 for LTI adaptive systems), and it
h unique (as a consequence of the ordering of the frequencies ~i in c from low to high),

For convenience, the detailed structure of the Tonal Canonical Form is shown in Fig-
ure 3.3 (i.e., obtained by expanding Part d. of Figure 3.2 into scalar terms), The fine
structure of Figure 3.3 clearly reveals a parallel bank of second-order LTI systems.

‘in(o’’)%rl

4
●

●e+ p
●

●

●

●

● )-9● +
●

..W)A
Figure 3,3: Tonal Canonical Form ‘

4 SPECIAL CASES

Several useful LTI representations fall out aa special cases of Theorem 3.1, and will be
treated in the next few Corollaries.

COROLLARY 4.1 (Gradient Algorithm with Leakage) Assume  that  the adaptive
~ystem with harmonic regreJsor (1?. 1)-(2.5) is specijied  a~ the gradient adaptive algorithm
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with leakage, i.e.,
w= –c7w + x(t)e(t) (4.1)

for some value of the leakage parameter o z O (cf., Ioannou and Kokotovic  /15]). Then, if
the XO condition of Theorem S. 1 is satisfied, the LTI  ezpre~~ion (S. 18) foT ~ is given by,

~(s)=/~di2”
S+o

i=l d + 2C7S + (u: + 02)
(4.2)

Proof: Result (4.2) follows by substituting,  r(s) = ~; 020, ~d F(s) = 1 in Th~rem
3.1, and rearranging. ■

COROLLARY 4.2 (Gradient Algorithm) Assume  that the adaptive system  with har-
monic regressor (1?. 1)-(% 5) is specified as the gradient adaptive algorithm, i.e.,

ti = pz(t)e(t) (4.3)

Then, if the XO condition of Theorem 9,1 is satisfied, the LTI  expression (9.18) for ~ is
given by,

m 
di=s

zT(s)=Pgs2+u: (4.4)

Proof: Result (4.4) follows by substituting u = O into (4.2) of Corollary 4.1,’ and rearrang-
ing. ■

COROLLARY 4.3 (Filtered-X Algorithm) Assume that the adaptive system with har-

monic regressor (1?.  1)-(2.  5) is specified as the Filtered-X algorithm (cf.,  [l?5)),  using gradient
adaptation, i.e.,

w = pi(t)e(t) (4.5)

5 = F(p)z(t) (4.6)

for some choice of regressor filter F(s).

Then, if the XO condition of Theorem S.1 is satisfied, the LTI expression (3.18) for ~ is
given by,

(4.7)

Proof: Result (4.7) follows by substituting, I’(s) = ~ in Theorem 3.1, and rearranging. ■

COROLLARY 4.4 (Augmented Error (AE) Algorithm) Assume  that the adaptive
~y~tem with harmonic regressor (1?. 1)-(2.5) is specified as the Augmented Error algorithm
(cf., [17],  [21]),  using the gradient adaptation algorithm, i.e.,

w = pqt)e(t) (4.8)
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where the augmented error e i~ given by,

e = e +F(p)[~]  – fi (4.9)

$ = T.OTz (4.10)

V
- =  WT5 (4.11)

& = F(p)[z] (4.12)

for some choice of regres~or  jilter F(p).

Then, if the XO condition of Theorem S. 1 is satisfied, the mapping j?om e to ~ is LTI and
b given by,

~(s) = l?(s)(l + @(s) – F(s)fi(s))-l (4.13)

where H(s) b dejined in (~. 7), and,

(4.14)

Proof: Using (4.8) and (4.10) together, the mapping from c to j can be simply recognized
as the Filtered-X algorithm with filter F(s) and can be calculated with the aid of Corollary
4.3 to give,

J = R(p)e (4.15)

where A(s) is given by (4.7). Similarly, using (4.8) &nd (4.11) together, the mapping from
E to u is of the form of a gradient algorithm with regressor 5 = X7c(t), where ~ is defined
as,

F ~ blockdiag{Fij  c R2mX2m (4.16)

Fi k
[ 1

FR(i) R(i) ~ R2)(2.
–F1(i)  FR(i) 9 for i = I,...)m (4.17)

The mapping from e to j can be calculated with the aid of (4.4) in Corollary 4.2 to give,

Ij = e(p)e (4.18)

where d(s) is given by (4.14), since the related XO condition is satisfied with,

FTXTXF  = blockdiag{di2  s lF(jui)[212x2} (4.19)

Substituting (4.15) and (4. 18) into (4.8) gives upon rearranging,

~= (1+  C(p) -  F(p)fi(p))  “e (4.20)

Substituting (4.20) into (4.15) gives the desired result (4.13). ■
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5 THE LTI/LTV DECOMPOSITION

The next result shows that in the general case where the XO condition is not satisfied, the
mapping ?t can always be decomposed into a paraltel connection of an LTI subsystem and
a norm-bounded LTV perturbation.

THEOREM 5.1 (LTI/LTV Decomposition) Consider the adaptive system (2.1)-(2.$)
with harmonic regre~jor (.%4)($.$). Then,

(i) In general the mapping Z from e to Q can be expressed as the parallel connection of an
LTI block ~(s), and an LTV perturbation block ~,

w: j = 2T(p)e + A[e] (5.1)

where,

E(S) 4 /4 ~di’ - Hi(S) (5.2)
i=l

A[e] e pc(t)TAI’(p)[Fc(t)e] (5.3)

A~XTX– D2 (5.4)

F ~ blOckdiag{Fi}  E R2mX2m (5.5)

Fi k
[ 1

F“(i) FI(i) ~ ~2x2

–F~(i) F’(i) ; for i = I,...im (5.6)

F~(i) b Re(F(j~i));  F1(i) ~ Im(F(j~i)) (5.7)

and where Hi(s) is u dejined in (9.19) of Theorem S. 1, and D* is chosen (non-uniquely)
m any matriz of the pairwise diagonal form (J. 17).

(ii) If the adaptation law I’(s) is stable with infinity norm l[17(s)ll@,  then the gain of the
LTV perturbation can be bounded from above as,

ll~112i < pm&(A)llr(s)llm m,~ lF(~i)l (5.8)

where II . /12i denotes the induced L2-norm  of the indicated operator.

Proof:
Proof of (i): Substituting (2.4) and the relation i = F(p)[Xc(t)]  = X7c(t)  into (2.1)-(2,3)
gives,

j = ~z(t)Tr(p)[~(t)e] (5.9)
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= pC(t)TXTX, r(p) ~c(t)e] (5.10)

Decompose X~X into two distinct parts using the identity,

XTX=D2+  (XTX–  D2)=D2+A (5.11)

Substituting identity (5.11) into (5.10), and expanding gives two distinct subsystems,

j = pc(t)TD2.  I’(p) [Fc(t)e] + PC(~)TAs r(p) [Fc(t)e] (5.12)

By the results of Theorem 3.1 the LTI part ~(s) is uniquely associated with the operator
containing the D2 term, and the LTV part A is uniquely associated with the operator
containing the A term in (5,12).

Proof of (ii): This result follows by standard signal norm bounding methods, and only a
brief outline is given, Let,

yA ~ A[e] = pcTAI’(p)[Fce]  = pll@Tqllz (5.13)

where,
@ & ATC (5.14)

q ~ I’(p) [%ce] (5.15)

1 i
and the 2-norm is defined as I [zI /2 5 [JO~ zTxdt  . Then,

l[yAllz =  P//~Tt41z ~ P119[lzm,U(@T~); (5.16)

But it can be shown that,
m~m(~T@)~ < ml s 5(A)

and,
llql12 S IIW)IIA m,w l~(”i)l. 1141

Combining (5.16)(5.17) and (5.18) gives,

llyA112 < wWWW~mw l~(~i)l o
t

Hence.

(5.17)

(5.18)

Illillzi A i3$~ ,le112W < p@A)llI’(g)llm  m,~ [F(~i)[ (5.20)

which is the desired result. ■

The LTI/LTV decomposition of ?-i can be understood by the sequence of block diagram
rearrangements shown in Figure 5.1. Specifically, Figure 5.1 Part a. shows the initial
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a)

b)

c(t)
+’

c(t)

c)
l-+ I
LJF(J) I

~z

e

XTX-D2

d)

c(t) vF(s)

LTI Block ~(s)
I I

, ‘ z~ “ d:li,(s)
e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .“
LTV Block ~
llmzl~ I-LM~(fN Im)lk ~,lm,)l
A= XTX-D2

Figure 5.1: General LTI/LTV Decomposition of ?t
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adaptive system with harmonic regressor; Part b. shows the matrix X pushed through
several scalar matrix blocks of the diagram; Part c. uses the identity X*X = D2 + (X*X –
D2) to split the diagram into two subsystems; and Part d. recognizes the upper subsystem
sa LTI and the lower subsystem as LTV (from Theorem 3.1) with the indicated norm
bound.

REMARK 5.1 The LTI/LTV decomposition in Theorem 5.1 is important for adaptive
systems which do not exactly satisfy the XO condition. In this csse,  the adaptive system
can be analyzed using modern robust control methods (i.e., small gain theorem) making
use of the analytic expression (5.2) f~r the LT1 block ~(s) and the norm bound (5.8) on
the time-varying perturbation block A [24] [26]. ■

REMARK 5.2 The need for 111’(s)[ IM to exist in Theorem 5.1 (part ii) requires that the
adaptive law use some type of “leakage” (cf., Ioannou and Kokotovic [15]). The possibility
of less conservative norm-bound remains as an open issue. ■

6 OPTIMIZED NORM BOUNDS

The decomposition as stated in Theorem 5.1 is only unique for a specified choice of D2.
Hence, D2 plays the role of a “multiplier” which should be optimized to capture “most”
of the LTI character of the ?i operator in the LTI/LTV decomposition. The optimization
problem will be addressed in this section.

The approach is to minimize the norm-bound (5.8) of the LTV operator over all possible
D2 of the appropriate pairwise diagonal form (3.17). Since the matrix D2 only appears in
the B(A) term, this is equivalent to minimizing ~(XTX  – D2). The problem is stated below
and shown to lead to a convex linear matrix inequality (LMI) optimization problem.

LEMMA 6.1 (LTV Norm-Bound Optimization) Consider the following optimization
problem,

subject to,

(6.1)

42.12X2 o . . . 0
0 .””.:“. I E R2mx2m (6.2)

“. “.. 0
1 0 . . . 0 d; . 12X2 J

where, di2 > (), i = 1 , . . . . m are arbitrary scalars.

Then the solution is given by solving the following equivalent convex optimization prob-
lem,

~i# t (6.3)
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subject to,

[

t“I 1XTX– D >0X=X–D t“I  –

D~o

(6.4)

(6.5)

where Dis constrained to have the pairwise diagonal structure (6.2)

Proofi Consider the related optimization problem,

rnjn t (6.6)

subject to,

[

t“I

1
X=X–D >0

X=X–D t“I – (6.7)

t > o (6.8)

Givent  > 0, inequality (6.7) is known to beequiwdentto Sz Owhere Sisthe Schur
complement t-(XTX-D)T(t-l S1)(XTX-D) (cf., [9]). But inequality S~OisequivaJent
totheinequdity  t2~(XTX-D)T(XTX -D), which istinimized  byt=ti(XTX-D). The
result of the lemma follows by further optimizing this solution over D with the constraint
920. ■

The optimization problem (6.3)-(6.5) is in a standard form of a linear objective function
with LMI constraints. As such, it can be solved using many available software pa&ages for
LMI problems, such as the LMI Control Toolbox [13].

For single-tone problems, the following result shows that the optimal D2 = # . I can be
found analytically.

LEMMA 6.2 (Single-Tone Case) Consider the optimization problem,

where d 2 ~ O b an arbitrary scalar,

Then the solution d2 is given by the average of the diagonals of X=X, i.e.,

wheTe,

(6.10)

(6.11)

(6.12)

18



Proofi The singular values al, 02 of the 2 x 2 symmetric matrix A = X~X – &. I can be
written in terms of its eigenvalues as,

~i(A) = l.Ai(A)l = l~i(X~X) _ #lj i = 1,2 (6.13)

where Ai(A) denotes an eigenvalue of A and ~i(X~X’)  denotes an eigenvalue of X~X.
Here, the eigenvalues Ai and ~i are related by the shift in the complex plane i.e., Ai =
~i – d, z = 1,2. Hence as & is increased, the Ai are determined by shifting the (nonegative
real) eigenvalues ~i to the left along the real axis a distance of &. The quantity E(A) =
rnaz([~l 1, [A21) is clearly minimized at the point where Al = –A2, or equivalently where,

CZ2 = (q + cYZ)/2  = Z’ruce(X~X)/2 (6.14)

which is the desired result (6.10).

7 EXAMPLES

7.1 Imperfect Sin/Cos  Regressor

Consider the gradient adaptive algorithm with leakage,

for some value of the leakage parameter a ~ O. This
1/(s + 0), F(s) = 1 in the adaptive system (2.1)-(2.5).

The ideal sine/cosine regressor is defined by,

i.e.,

(7.1)

c.orrmponds  to the choice I’(s) =

[ 1sinwlt
x =

Cos qt

Since z = X~C(t) with Xl = diag[l, 1] it follows that the XO condition is satisfied exactly
with confluence matrix XI*X1 = D2 = diag[l, 1]. Using the results from Corollmy 4.1 the
adaptive system is LTI with transfer function,

$+-u
(7.2)H($) = P$2 + ‘2~$ + (u: + ~2)

Now consider the non-ideal regressor case where the amplitude is perturbed by c and
the phase is perturbed by t9 as follows,

[

(1+ ~)~ sin(w~t + ~)
z =  (1 -  ;)icos(ult -  :) 1

x=
[
(1+ ;);

o (~ :;)+ ][ ::$ %$]]
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Then,

XTX = [
1 + ; cm(e) sin(e) 1 &@+A

sin(0) 1 – : ins(a) –

where,

‘ 2 =  [i :1’ ‘=  R%) -;%/01
Here, the choice of D2 has been optimized using the results of Lemma 6.2 for the single tone
case. Clearly, the XO condition is not satisfied since A # O. However, one cam compute,

=(A) = (~ cos2(0) + sin2(8)) *

Hence, by the LTI/LTV decomposition the adaptive system is representable by a parallel
connection of the LTI block ~(s) given in (7.2) and an LTV perturbation block ~ with
induced 2-norm bound,

I[AI12, < PmE(A)l[r(S)ll=lF(jW~)l

= ~ (~ c0s2(0) + sin2(8)) *

The equivalen. LTI system shown in Figure 7.1. It is seen that as e + O and 0 ~ O, the
norm bound A goes to zero, which ensures a pure LTI representation in the limiting case
of a perfect regressor implementation. For the nonideal case of finite c and 6, the above
LTI/LTV decomposition is amenable to analysis using stzmdard robust control methods.

a) m

()1+: Sia(tm,l  + :)

e

[ )
1/2

llWf~  ~ ~m2(6)+un2@)

Figure 7.1: LTI/LTV decomposition of an adaptive system with an imperfect sin/cos re-
gressor
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7.2 Tap Delay-Line Regressor

Consider the tap delay-line regressor driven by a sum of sinusoids shown in Figure 7.2,
Part a.. Here m is the number of tones, T is the tap delay, and 2z/Z’ is the minimal
spacing between any two sinusoids tii # tij in ~, and the adaptive gain p = ~/N has been
normalized by the number of taps N.

Applying the LTI/LTV decomposition to this example gives the parallel connection of
the LTI block and LTV blocks shown in Figure 7.2 Part b. (see [2] [5] for proof). It is seen
that the norm bounded LTV perturbation ~ can be made arbitrarily small by increasing
the number of taps N. Glover’s LTI representation [14] is recovered in the limit as the
number of taps is increased to infinity.

b)
LTI Block H(s)

e
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LTV Block ii

Figure 7.2: LTI/LTV decomposition of ?-t for harmonic adaptive system with TDL basis
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8 DISCUSSION

At this point, several comments are in order.

1.

2.

3.

4,

9

This

All of the LTI transfer functions ~(s) in the Corollaries of Section 4 have large
gains in the vicinity of the tone frequencies ~i, i = 1,,.., m. When used in closed-
loop, the large gains become “notches” of the form (1 + ~(s)) -l. Such closed-loop
notches have becm shown to be effective at canceling sinusoidal disturbances in a
wide variety of adaptive feedforward control applications (cf., Sievers and von Flotow
[22], Morgm [19], Collins [10], Spanos and Mman [23], Bodson, Sacks and Khosla
[8], and Messner and Bodson [16]). In light of the new LTI results, many of the
conditions and assumptions made in these references cm be relaxed.

The LTI properties shown for the Augmented Error algorithm in Corollary 4,4 are
new, and do not seem to have any counterpart in the existing literature, This is
somewhat surprising since the AE algorithm provides an importamt  alternative to the
Filtered-X algorithm when there is a plant blocking the noise cancellation path (cf.,
[2]).

The well-known “small p“ constraint imposed on the Filtered-X algorithm for stability
(when there is a plant blocking the noise cancellation path), is motivated heuristically
by Widrow [25] based on the need to interchange certain LTV blocks in the stabilty
proof. However, this constraint can be completely understood and quantitatively
determined in an LTI context using Nyquist analysis, Details can be found in [2],
Furthermore, an LTI based Nyquist analysis indicates that the small p constraint is
not required for the AE algorithm, and consequently the adaptation gain p csm be
made arbitrarily large without causing instability.

The fact that a “tall” matrix X can satisfy the XO condition indicates that even
overpararnetrized systems can be LTI and have exponentially convergent tracking
errors. Such exponential convergence properties are surprising in light of the fact
that the regressor is overpamxnetrized  and is not persistently exciting. Interestingly,
it is shown in [6] that exponential tracking error convergence is a property of my
overpanunetrized  adaptive system with a positive definite  confluence mahiz, zmd is
not fundamentally restricted to systems with LTI representations.

CONCLUSIONS

paper establishes a necessary and sufficient condition for an adaptive system with
a regressor composed completely of sinusoids to admit an exact LTI representation. The
condition (denoted as the
diagonal, This condition
j of the adaptive system

“XO’) condition), is simply that the confluence matrix is pairwise
is equivalent to the property that the block diagram from e to
can be rearranged so that the regressor hss a minimal length,
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persistently exciting, paired sine/cosine regressor. The reduced block diagram is said to
be in Tonal  Canonical Form, The theory reproduces aa special cases all known instances
of LTI adaptive systems found in the literature, and indicates a much larger clsas than
previously known,

Several LTI related properties were investigated, including (1) invariance of the XO
condition under orthogonal regressor transformations; (2) systematic regressor transforma-
tions to ensure that the XO condition is satisfied; (3) LTI representations of the Augmented
Error algorithm of Monopoli.

The theory was then extended to the applications where the XO condition does not
hold. For this case, an LTI/LTV Decomposition Theorem was proved which decomposed
the adaptive system into a parallel connection of an LTI subsystem and an LTV subsystem.
An explicit norm-bound was established on the LTV subsystem, enabling analysis by robust
control methods applicable to LTI systems with norm-bounded perturbations. Since the
multiplier matrix D* associated with the LTI/LTV decomposition is non-unique, it is best
chosen to minimize the size of the norm-bounded LTV perturbation. It was shown that
this problem could be formulated as a linear matrix inequality and readily solved using
available software. For the single-tone case, an analytic solution was provided for the
optimzd multiplier.

Two examples were given to demonstrate the new results. The first example used a
regressor constructed from an imperfect sine/cosine bssis.  This example clearly showed
how the norm bounded perturbation increases aa the sin/cos basis is detuned in amplitude
and phase. The second example considered a Tap Delay-Line regressor basis. It waa shown
that the adaptive system could be represented as an LTI system with an additive norm-
bounded LTV perturbation which decreases as N-l where N is the number of taps. The
TDL example puts Glover’s 1977 results into a modern control context by providing a valid
representation of the adaptive system for any ‘%nite’) number of taps, and by exposing the
precise nature of convergence to an LTI system as the number of taps becomes large.

The LTI representations developed in this paper are significantly different from other
representations commonly used in the adaptive control literature [21]. Specifically, the
LTI/LTV representation can be analyzed and designed using modern robust control tools
applicable to LTI systems with norm-bounded perturbations. It is hoped that this new
representation will lead to a better understanding of how such adaptive systems work,
provide an improved characterization of their performance and robustness properties, amd
lead to new architectures and adaptive design techniques in the future.
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A APPENDIX: Proof of Theorem 3.1

Define,
XTX ~ M = {Mij} E R2mx2m ( A l )

(A.2)

Using (2.3)-(2.5), the filtered regressor can be represented as,

i = F(p)[z] = F(p)[xc(t)] = #?rc(t) (A.3)

where % is the block diagonal matrix given by,

F = blockdiag{Fi)  E R2mX2m (A.4)

F; k
[ 1

~’(i) ~Z(~) ~ R’”’.

‘~’(i) &(i)
) for i = I,..,)m (A,5)

Proof of (i): It is desired to show that M = D2 (where D’ has the block-diagonal form
(3.17)), if and only if the mapping ?i from e to j is LTI, Fkom (2,1)-(2,5) and (A.3) this
mapping can be written as,

G=

=

pC(t)TXT.  l?(p) [XFc(t)e] (A.6)

pC(t)~XTX7. I’(p) [c(t)e] (A,7)

(A.8)pc(t)~MF  ~’ ~(~)c(t – ~)e(t – ~)d~

PJ’7(~)c(~)T~c(~  -~)e(~-~)d~ (A.9)

where 7(t) is the impulse response of the filter I’(s), and where we have defined the matrix,

V=MF (A.1O)

For later convenience, V is partitioned into 2 x 2 blocks (compatibly with F,M),  as follows,

V = {V i j} ~ R2mx2~ ( A l l )

(A.12)

It is seen that the mapping ?f from e to ~ in (A.9) is represented by a convolution integral,
which is time-invariant if and only if the kernel is independent of time t, equivalently, if
and only if,

c(i)~vc(i – T) = p(~) (A.13)
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where /?(T) is a function purely of ~. Condition (A. 13) will be examined in detail. Expand-
ing c(t – 7) gives the identity,

c(t – ~) = Q(t)c(~) (A.14)

where Q(t) is the block diagonal matrix,

Q(t) = ldockdiag{Qi(t)}  E l?’~x’~ (A.15)

(A.16)

Substituting (A.14) into (A.13) gives,

cl*(t)c(T) = /?(T) (A.17)

where,
d(t) ~ c(t)TVQ(t) (A.18)

Equation (A.17) holds if and only if cr is a constant vector, i.e., cE(t) = cr”. To see this,
multiply both sides of (A. 17) on the right by c~(r) and integrate with respect to r over any
interval [~1, ~2] such that J C(T )c(~ )~d~ is invertible. Such an interval always exists since
the components of c(~) are linearly independent functions (i.e., sines and cosines of distinct
frequencies). The resulting equation can be solved for cr, implying that any vrdid solution
a to equation (A.17) must be a constant vector.

Assuming that o is constant, consider relation (A,18) taken two components at a time,
i.e.,

where a;, cY~ are constants and,

Ci(t) = [sin LO;t, CDS LOit]T (A.20)

Expanding the first component of (A.19) gives,

0!;=— ~S(~jt) Sin(@it)W~~ – ~s(~jt)  ~s(@it)u~,l

+  Sin(~jt)  SiIl(Ldit)U~f  + SiIl(Wjt) COS(LO~t)Uf (A,21)

=  ;(– SiIl(Ldj  +  Ui)t + SiIl(Ldj  –  LOi)t)U~~ –  ~(COS(uj  –  LOi)t +  COS(tij  +  u~)t)U~

+  ~(COS(Ldj  –  LJi)t – cos(~j + ~i)~)uy  + ~(sin(wj + ~i)t + sin(wj – ~i)t)u~(A.22)

(A.23)
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Here, (A.22) follows by expanding (A.21) in terms of sum/difference frequencies; and (A.23)
follows by rearrangement. The constant phases ~ij, @ij can also be calculated, but will not
be needed. A similar expression to (A.23) can be calculated by using the second term Q$ in
(A.19), but this can be shown to be redundant with (A.23) and will not impose additional
constraints.

Case 1: i #j

First consider the case where i # ~ so that ~i and ~j are distinct nonzero frequencies.
Then (A.23) is the sum of two sinusoids of distinct frequencies, which is equal to a constant
if and only if both terms vanish identically, i.e.,

Vij =0 ; fori#~ (A.26)

However, from (A.1O) and the 2 x 2 partitioned structure of matrices M and %,

Vij = Mij.Fj (A,27)

where %j in (A.5) is invertible (since its determinant 11’(~~j)12 is nonzero by assumption).
Combining (A.26) and (A.27), and using the invertibility of Fj gives,

M ij =0; fori#j (A.28)

Case 2: i = j

Next consider the case where i = ~, Then, equation (A.23) becomes,

(A.29)

The second term of (A.29) is constant, as desired. The first term of (A.29) is sinusoidal of
nonzero frequency, which is constant-valued if and only if it vanishes identically, i.e.,

However,
Mii.Fi = Vii (A,31)
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or equivalently (by the invertibility of .Fi)j

M ii = ViiF~l (A,32)

By the symmetry and nonegativity of M = X~A! one has,

m~~ = m~~ (A.33)

m~~ ~ O; q?: ~ () (A.34)

Expanding (A,32) using properties (A.30)(A,33) and an analytic expression for f;l gives,

where,
‘i24 (U~il~~(i) + u~f~Z(i))/l~(~~i)12

~i A (–u~/~Z(i)  + u~?~R(2))/lF(~ui)12

By (A.33) and the special form of the right-hand side of (A.35),
m?,, A

:s = d i

2 ~ O ~d m: = ~1~ = 0, which giv=,

M ii = [ 1
d i

2 O
0 di

2 ao

(A.35)

(A.36)

(A.37)

it follows that, m~} =

(A.38)

In summary, the kernel of the convolution (A.9) is a function purely of ~ if and only if the
i, ~th block Mij of the matrix M has the form (A.28) for i # ~, and the form (A.38) for
i = ~. Equivalently, the linear operator M from e to ~ is time-invariant if and only if M haa
the block-diagonal form of D2 in (3,17) of Theorem 3.1, which is the desired result.

Proof of (ii): Substituting XTX ~ M = D2 into (A.7) gives,

i = pC(t)TD2.  I’(p) [Fc(t)tj (A.39)

= /L ~ di2ci(t)T  . I’(p) [7ici(t)e] (A,40)
i=l

Here, (A.40) follows by the pii,rtitioned  structure of D2, 7, c(t); and (A.41) follows by
applying Lemma 3.1 (e.g., compare to (3.9)), separately for each term in the sum (A.40).
■
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